已知数列(an),(bn)满足a1=2,an-1=an(an+1-1),bn=an-1.数列(bn)的前n项和为sn

2个回答

  • (1)由bn=an-1得an=bn+1代入an-1=an(an+1-1)得bn=(bn+1)bn+1

    整理得bn-bn+1=bnbn+1,

    ∵bn≠0否则an=1,与a1=2矛盾

    从而得

    1/(bn+1)−1/bn=1

    ∵b1=a1-1=1

    ∴数列{1/bn}是首项为1,公差为1的等差数列

    ∴1/bn=n,即bn=1/n

    (2)∵Sn=1+1/2+1/3+.+1/n

    ∴Tn=S2n-Sn=1+1/2 +1/3+.+1/n+1/(n+1)+. +1/2n−(1+1/2 +1/3 +.+1/n)

    =1/(n+1) +1/(n+2) +.+1/2n

    ∵2n+1<2n+2

    ∴1/(2n+1)>1/(2n+2)

    ∴Tn+1−Tn>1/(2n+2) +1/(2n+2)−1/(n+1) =0

    ∴Tn+1>Tn.

    (3)用数学归纳法证明:

    太难打了,截给你

    采纳吧~