(1)由bn=an-1得an=bn+1代入an-1=an(an+1-1)得bn=(bn+1)bn+1
整理得bn-bn+1=bnbn+1,
∵bn≠0否则an=1,与a1=2矛盾
从而得
1/(bn+1)−1/bn=1
∵b1=a1-1=1
∴数列{1/bn}是首项为1,公差为1的等差数列
∴1/bn=n,即bn=1/n
(2)∵Sn=1+1/2+1/3+.+1/n
∴Tn=S2n-Sn=1+1/2 +1/3+.+1/n+1/(n+1)+. +1/2n−(1+1/2 +1/3 +.+1/n)
=1/(n+1) +1/(n+2) +.+1/2n
∵2n+1<2n+2
∴1/(2n+1)>1/(2n+2)
∴Tn+1−Tn>1/(2n+2) +1/(2n+2)−1/(n+1) =0
∴Tn+1>Tn.
(3)用数学归纳法证明:
太难打了,截给你
采纳吧~