f(x)=ax^2+bx+c,
0=f(0)=c.
f(x)=ax^2+bx,
1+x+f(x)=1+x+ax^2+bx=f(x+1)=a(x+1)^2+b(x+1)=ax^2+2ax+a+bx+b,
ax^2 + x(b+1) + 1 = ax^2 + x(b+2a) + a+b,
b+1=b+2a,a= 1/2.
1=a+b=1/2 + b,b=1/2.
f(x)=x(x+1)/2
f(x)=ax^2+bx+c,
0=f(0)=c.
f(x)=ax^2+bx,
1+x+f(x)=1+x+ax^2+bx=f(x+1)=a(x+1)^2+b(x+1)=ax^2+2ax+a+bx+b,
ax^2 + x(b+1) + 1 = ax^2 + x(b+2a) + a+b,
b+1=b+2a,a= 1/2.
1=a+b=1/2 + b,b=1/2.
f(x)=x(x+1)/2