题目不全,没有给出a1,原题应该有的吧.只好按你写的来解了:
n≥2时,
an=Sn-S(n-1)=n²·an-(n-1)²·a(n-1)
(n²-1)an=(n-1)²·a(n-1)
(n+1)(n-1)an=(n-1)²·a(n-1)
(n+1)an=(n-1)a(n-1)
a1=0时,{an}是各项均为0的常数数列,an=0
a1≠0时,
an/a(n-1)=(n-1)/(n+1)
a(n-1)/a(n-2)=(n-2)/n
…………
a2/a1=1/3
连乘
an/a1=(1/3)(2/4).[(n-1)/(n+1)]=[1×2×...×(n-1)]/[3×4×...×(n+1)]=2/[n(n+1)]
an=2a1/[n(n+1)]
a1=0时,an=2a1/[n(n+1)]=0,同样满足表达式.
综上,得数列{an}的通项公式为an=2a1/[n(n+1)]