求f(x)=2x的平方 /x-3 (x>3)的最小值

2个回答

  • (1)初等解法:

    f(x)=2*x^2/(x-3)

    先对分子进行配方:

    2*x^2=2*[(x-3)^2+6x-9]=2*[(x-3)^2+6(x-3)+9]

    f(x)=2*x^2/(x-3)=2*[(x-3)^2+6(x-3)+9]/(x-3)

    =2(x-3)+12+18/(x-3)

    =2(x-3)+18/(x-3)+12

    >=2*√[2(x-3)*18/(x-3)]+12 {因x>3,x-3>0}

    =2*√36+12

    =24

    (2)高等解法:

    对f(x)=2*x^2/(x-3)求导数f'(x)并令f'(x)=0

    =>f'(x)=[4x(x-3)-2x^2]/(x-3)^2=0

    =>x=0(舍去,因x>3)x=6

    将x=6带入f(x)得到:

    f(6)=2*6^2/(6-3)=24