1,kPA*kPB=y^2/(x-√2)(x+√2)=-1/2 , E: x^2/2+y^2=1(x不=正负√2,y不=0)
2,F椭圆焦点,设L:y=k(x-1)(k存在)
代入E,得:(2k^2+1)x^2-2k^2x+2k^2-2=0
MN中点(k^2/(2k^2+1),-k(k^2+1)/(2k^2+1))
1,kPA*kPB=y^2/(x-√2)(x+√2)=-1/2 , E: x^2/2+y^2=1(x不=正负√2,y不=0)
2,F椭圆焦点,设L:y=k(x-1)(k存在)
代入E,得:(2k^2+1)x^2-2k^2x+2k^2-2=0
MN中点(k^2/(2k^2+1),-k(k^2+1)/(2k^2+1))