⑴∵BC为切线,∴OD⊥BC,
∵∠C=90°,∴OD∥AC,
∴OA/OB=CD/BD,
在RTΔBDO中,
sin∠B=OD/OB,OD=OA,
∴sin∠B=OD/OB=OA/OB=CD/BD.
⑵∵OD∥AC,∴∠ODA=∠CAD,
∵OA=OD,∴∠OAD=∠ODA,
∴∠CAD=∠OAD,
∴AD是∠CAB的平分线,
∴CP/EP=AC/AE,
sin∠B=CD/BD=2/5
∴BC/BD=7/5,
∵ΔABC∽ΔOBD,
∴AC/OD=BC/BD=7/5,
∴AC/AE=AC/(2OD)=7/10,
∴CP/EP=7/10.