令a=2010
M=a²+a²(a+1)²+(a+1)²
=[(a+1)²-2a(a+1)+a²]+2a(a+1)+a²(a+1)²
=(a+1-a)²+2a(a+1)+a²(a+1)²
=1+2a(a+1)+a²(a+1)²
=[a(a+1)+1]²
所以M平方根=±[a(a+1)+1]=±4042111
令a=2010
M=a²+a²(a+1)²+(a+1)²
=[(a+1)²-2a(a+1)+a²]+2a(a+1)+a²(a+1)²
=(a+1-a)²+2a(a+1)+a²(a+1)²
=1+2a(a+1)+a²(a+1)²
=[a(a+1)+1]²
所以M平方根=±[a(a+1)+1]=±4042111