lim[f(x+h)-f(x-h)]/(2h)→f'(x),则:lim[f(x+h)-f(x-h)]/h→2f'(x)=-4
f'(x)=-2,求limf(x+h)-f(x-h)/h(h趋向于0)
1个回答
相关问题
-
设f(x)=√x,求limf(x+h)-f(x)/h (h趋向于0)
-
f(x)=x^2 求lim{f(x+h)-f(x)}/h h趋向于0
-
f(x)在x处二阶可导,求lim{[f(x+h)-2f(x)+f(x-h)]/h^2},h趋向于0
-
已知f`(3)=2,求limf(3-h)-f(3)/2h=?,(h趋向于0)
-
设f(x)=x^2,则当h趋向于0时,[f(1+2h)-f(1)]/h趋向于
-
如果f′(1)=2,求limf(1+h)-f(1-2h)/e^2h-1 h趋向于0
-
f'(x)=-3则 limf(x+h)-f(x-3h)/h=
-
f(x+y)=f(x)+f(y)+2xy lim f(h)/h =0 h 趋向0 问f'(x) 和f(x)
-
lim[√(h+x)-√x]/h h趋向于0
-
证明lim( h→0)[f(x0 h) f(x0-h)-2f(x0)]/h2=f''(x0)