怎么证明一个函数黎曼可积?我们老师讲到过可以利用拉格朗日中值定理取一个特殊的黎曼和,然后证明其他任意的黎曼和与这个特殊的

1个回答

  • 这样证明按照定义肯定是对的,但应该比较麻烦吧……一般如果要证明一个函数黎曼可积引入函数区间上的振幅概念(就是一个区间上面最大值减去最小值),然后用达布理论,黎曼可积转化为几个等价条件,比如任给一个δ>0,都能找到一种分割,使得这种分割成的所有区间振幅之和不超过δ,则函数黎曼可积……(还有其他等价条件,这些等价条件证明中比原始定义要快得多,从原始定义去证明这些等价条件似乎要用楼主说的方法,但是一旦证出来以后就直接用这些等价条件).

    最完美的解释黎曼可积的理论还不是达布理论里面的上述等价条件,而是勒贝格测度论诞生以后推出的“终极”等价条件:函数黎曼可积等价于它的间断点集合测度为0.这个可以参考实变函数论的相关书籍.这些定理结论我都记得,只是怎么证出来的有些忘了……

    (以上所有“函数”指的都是有界函数,无界函数不可能黎曼可积)