首页
作文
年级
一年级
二年级
三年级
四年级
五年级
六年级
字数
50字
100字
150字
200字
250字
300字
350字
体裁
日记
读后感
记叙文
抒情
写景
句子
造句
句子
俗语
标语
格言
横幅
问候语
美句
佳句
寄语
词句
祝福语
口号
谚语
广告语
条幅
宣传语
名言警句
名句
名言
语录
词典
问答
登录
计算∫∫∫zdxdydz,其中Ω是由锥面z=h*(根号下x2+y2)/R与平面z=h(R>0,h>0)所围成的闭区域
0
0
0
1个回答
Dz:x²+y²≤(Rz/h)²
原式=∫(0,h)dz∫∫Dz zdxdy
=πR²/h²∫(0,h)z³dz
=πR²/4h²* h^4
=πR²h²/4
0
0
相关问题
求∫∫∫[1/(x^2+y^2+1)]dxdydz,其中D由锥面x^2+y^2=z^2及平面z=1所围成的闭区域.
0
0
∫∫∫Ωxzdsdydz,其中Ω是由平面x=y,y=1,z=0及抛物柱面y=x^2所围成的闭区域
0
0
计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域
0
0
设Ω由平面z=1及z=x^2+y^2围成,计算三重积分∫∫∫zdxdydz
0
0
计算曲面积分(如图),其中∑是介于平面Z=0和Z=H(H>0)之间的圆柱面x^2+y^2=R^2
0
0
求助三重积分计算下列三重积分fffzdxdydz,其中Ω是由平面x=0,y=0,z=0和x+y+z=1所围成的有界闭区域
0
0
高斯公式的设Ω是由锥面z=√(x^2+y^2)与半球面z=√(R^2-x^2-y^2)围成的空间区域,∑是Ω的整个边界的
0
0
∫∫∫(x^2+y^2)dv的值,其中Ω是x^2+y^2=z^2与z=a所围成的区域(a>0)
0
0
设空间闭区域Ω由曲面z=a2-x2-y2与平面z=0所围成,Σ为Ω的表面外侧,V为Ω的体积.证明:∯Σx2yz2dydz
0
0
设Ω是由曲面z=2-x2-y2及z=x2+y2所围成的有界闭区域,求Ω的体积.
0
0