原式=(x^3-2x^2-5x^2+10x-6x+12)/(x^3-6x^2+2x^2-12x+x-6)
=(x-2)(x^2-5x-6)/(x-6)(x^2+2x+1)
=(x-2)(x-6)(x+1)/(x-6)(x+1)(x+1)
=(x-2)/(x+1)
用到因式分解技巧中的拆项和十字相乘
原式=(x^3-2x^2-5x^2+10x-6x+12)/(x^3-6x^2+2x^2-12x+x-6)
=(x-2)(x^2-5x-6)/(x-6)(x^2+2x+1)
=(x-2)(x-6)(x+1)/(x-6)(x+1)(x+1)
=(x-2)/(x+1)
用到因式分解技巧中的拆项和十字相乘