f(x)=2[2cos²(x+α)-1]+2√3[2sin(x+α)cos(x+α)]=2cos[2(x+α)]+2√3sin[2(x+α)]
=4sin[2(x+α)+π/6]
∵图像关于原点对称 ∴f(0)=0 ∴sin(2α+π/6)=0
∴实数α的最小正值是5π/12
f(x)=2[2cos²(x+α)-1]+2√3[2sin(x+α)cos(x+α)]=2cos[2(x+α)]+2√3sin[2(x+α)]
=4sin[2(x+α)+π/6]
∵图像关于原点对称 ∴f(0)=0 ∴sin(2α+π/6)=0
∴实数α的最小正值是5π/12