(1)若f(1/2)=0,且f(x)的最小1/2值为0,
则f(1/2)=a*(log1/2)^2+b*log2(1/2)+1=0
则a-b+1=0.(1)
且(4a-b^2)/4a=0.(2)
则b=2,a=1.所以f(x)的解析式为f(x)=(logx)^2+2log2(x)+1.
(2)在(1)的条件下
当x>0时F(x)=f(x)=(logx)^2+2log2(x)+1.当x<0时F(x)=-{[(log(-x)]^2+2log2(-x)+1}
故F(x)的表达式是:
.F(x)=(logx)^2+2log2(x)+1 ,(x>0)
F(x)=-{[(log(-x)]^2+2log2(-x)+1},(x<0)