若抛物线y 2 =-2px(p>0)上有一点M,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M点的坐标.

1个回答

  • y 2=-4x,M(-9,6)或M(-9,-6)

    本题考查抛物线的几何性质,解题时要认真审题,注意挖掘题设中的隐含条件。

    (1)(1)抛物线的开口向右,焦点在x轴的正半轴上,故可求焦点F坐标;

    (2)利用点A(-2,3)到抛物线y 2=2px(p>0)焦点F的距离为5,从而 利用定义故可求出抛物线的方程.

    由抛物线定义知焦点为F(-

    ,0),准线为x=

    由题意设M到准线的距离为|MN|, 则|MN|=|MF|=10, 即

    -(-9)=10,

    ∴p=2.故抛物线方程为y 2=-4x,将M(-9,y)代入y 2=-4x,解得y=±6,

    ∴M(-9,6)或M(-9,-6).