微分方程(x)^2y'+2xy=3y^2,y(2)=2/9

1个回答

  • 方程两边同除以x^2,

    dy/dx+2y/x=3(y/x)^2,

    设u=y/x,

    dy/dx=3u^2-2u

    y=ux,

    dy/dx=u+xdu/dx,

    3u^2-2u=u+xdu/dx,

    du/[3u(u-1)]=dx/x,

    两边同时积分,

    1/3∫[1/(u-1)-1/u]du=ln(Cx),(C是常数)

    (1/3)[ln(u-1)/u]=ln(Cx)

    (u-1)^(1/3)/u^(1/3)=Cx,

    (y/x-1)^(1/3)/(y/x)^(1/3)=Cx,

    通解为:[(y-x)/y]^(1/3)=Cx,

    当x=2,y=2/9,

    (2/9-2)^(1/3)/(2/9)^(1/3)=C*2,

    -2=2C,

    ∴C=-1,

    ∴当y(2)=2/9特解是:

    :[(y-x)/y]^(1/3)=-x.