设f(x)=x²-2ax-a²-(3/4),若对于0≤x≤1,均有|f(x)|≤1,求实数a的取值范围
解:-1≤f(x)≤1,f(x)图像是抛物线,开口向上,
则f(0)≤1且f(1)≤1且f(x)min≥-1,
联立解得-√2/4≤a≤√2/4