an>0(n=1,2,3...),且2sn=an+(1/an),
n=1时,2a1=a1+1/a1,a1^2=1,a1=1.
n=2时2(1+a2)=a2+1/a2,a2^2+2a2-1=0,a2=√2-1.
n=3时2(√2+a3)=a3+1/a3,a3^2+2√2a3-1=0,a3=√3-√2.
假设ak=√k-√(k-1),k∈N+,那么Sk=√k,
n=k+1时2(√k+a)=a+1/a,
∴(a)^2+2√ka-1=0,
a=√(k+1)-√k,
∴对任意n∈N+,都有an=√n-√(n-1).