分析:先将函数f(x)=loga(2-ax)转化为y=logat,t=2-ax,两个基本函数,再利用复合函数求解.
令y=logat,t=2-ax,
(1)若0<a<1,则函y=logat,是减函数,
而t为增函数,需a<0
此时无解.
(2)若a>1,则函y=logat,是增函数,则t为减函数,需a>0且2-a×1/2 ≥0
此时,1<a≤4
综上:实数a 的取值范围是(1,4]
分析:先将函数f(x)=loga(2-ax)转化为y=logat,t=2-ax,两个基本函数,再利用复合函数求解.
令y=logat,t=2-ax,
(1)若0<a<1,则函y=logat,是减函数,
而t为增函数,需a<0
此时无解.
(2)若a>1,则函y=logat,是增函数,则t为减函数,需a>0且2-a×1/2 ≥0
此时,1<a≤4
综上:实数a 的取值范围是(1,4]