∵f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=f(c)∴由罗尔中值定理得存在e1∈(a,c),使得f'(e1)=0;存在e2∈(c,b),使得f'(e2)=0;∴f'(e1)=f'(e2)=0由于f'(x)在[e1,e2]连续,(e1,e2)可导故存在e∈(e1,e2)使得f'...
设f(x)在【a,b】上连续,在(a,b)内二阶可导,且f(a)=f(b)=f(c),a
1个回答
相关问题
-
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)f(b)<0,f'(c)=0.a
-
设f(x)在[a,b]上连续,f(a)=f(b)=0,f(x)在(a,b)内二阶可导,且f'+(a)>0.求证在(a,b
-
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,
-
设f(x)在[a,b]上连续,(a,b)内可导,且f'(x)≠0,f(a)f(b)
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)f‘(c)+f^2(c
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)
-
设函数f(x)在[a,b]上连续,在(a,b)内可导,f(a)>a,f(b)
-
设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]
-
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,g(x)
-
设f(x)在[a,b]上连续,在(a,b)内二阶可导,连接点A(a,f(a))与B(b,f(b))的直线交曲线y=f(x