如图,在三角形ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求

5个回答

  • (1)当∠BAC=90°时

    ∵BA=BD

    ∴∠BAD=90°-1/2∠B

    ∴∠CAD=1/2∠B

    ∵CA=CE

    ∴∠CAE=1/2∠ACB

    ∴∠DAE=1/2(∠ABC+∠ACB)=45°

    所以不变

    (2)当AB=AC时,∠B=∠ACB

    ∵CA=CE

    ∴∠CAE=1/2∠ACB

    ∵BA=BD

    ∴∠BDA=90°-1/2∠B

    ∴∠CAD=∠BDA-∠ACD=90°-1/2∠B-∠B

    ∴∠DAE=90°-1/2∠B-∠B+1/2∠B=90°-∠B

    ∴∠DAE=1/2(180°-2∠B)=1/2∠BAC