x趋向0时,[e^(x/2)]-1=0,要使极限存在,则x趋向0时,f(x)=0,即f(0)=0
利用落比塔法则,分子分母求导,得到
lim(x趋向0)[2f'(x)/[e^(x/2)]]=(代入x=0)=2f'(0)=3
则f'(0)=3/2
所以f(0)+f'(0)=3/2
x趋向0时,[e^(x/2)]-1=0,要使极限存在,则x趋向0时,f(x)=0,即f(0)=0
利用落比塔法则,分子分母求导,得到
lim(x趋向0)[2f'(x)/[e^(x/2)]]=(代入x=0)=2f'(0)=3
则f'(0)=3/2
所以f(0)+f'(0)=3/2