an=1/2(an-1+an-2) 将此等式变形可得 an-an-1=-1/2(an-1 - an-2) 即 bn=-1/2bn-1 且 b1=1 不为0 ,所以bn 为 等比数列.求出第一问,第二问就好做了.请楼主自己解决.
数列{an}满足a1=1,a2=2,an=1/2(an-1+an-2)(n=3,4...),数列{bn}满足bn=an+
1个回答
相关问题
-
数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.
-
数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1)/(an-1).(n
-
已知数列{an}中a1=[3/5],an=2-[1an−1(n≥2,n∈N*),数列 {bn},满足bn=1a
-
数列{An}{Bn}满足下列条件:A1=0,A2=1,An+2=An+An+1/2,Bn=An+1-An
-
设a1=2.a2=4,数列{bn}满足:bn=an+1-an,bn-1=2bn+2
-
已知数列{an}中,a1=35,an=2−1an−1(n≥2,n∈N+),数列{bn}满足:bn=1an−1(n∈N+)
-
已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2.
-
数列{an}为等差数列,数列{bn}满足bn=2an+1+a2n-1,证明{bn}为等差数列
-
已知数列{an}满足:an+an+1=2an+2,且a1=1,a2=2,n∈N* 一:设bn=an+1-an ,证明bn
-
已知数列{an}:满足:a1=3,an+1=3an+2an+2,n∈N*,记bn=an−2an+1.