证明:(1)CD垂直AB,BE垂直AC,则∠ACD=∠FBD(均为∠A的余角).
又∠ABC=45°,则:CD=BD;∠CDA=∠BDF=90°.
∴ ⊿CDA≌⊿BDF,BF=AC.
(2)∠ABE=∠CBE;BE=BE;∠BEA=∠BEC=90度.
则⊿BEA≌⊿BEC(ASA),AE=CE,AC=2CE,故BF=2CE.
(3)BD=CD,BH=CH,则DH垂直BC,即DH垂直平分BC,CG=BG.
故∠GCB=∠GBC=(1/2)∠ABC=22.5°,∠EGC=∠GCB+∠GBC=45°,得:EG=CE=AE.
EG>GF,所以AE>GF.