求x/(x+1)(x+2)(x+3)的不定积分

1个回答

  • 1/(x+1)(x+2)(x+3)=1/(x+1)[1/(x+2)-1/(x+3)]

    =1/[(x+1)(x+2)]-1/[(x+1)(x+3)]

    =1/(x+1)-1/(x+2)-1/2[1/(x+1)-1/(x+3)]

    =1/[2(x+1)]-1/(x+2)+1/[2(x+3)]

    ∫x/(x+a)dx=∫[1-a/(x+a)]dx=x-aln|x+a|+C

    ∫x/(x+1)(x+2)(x+3)dx

    =∫x/[2(x+1)]-x/(x+2)-x/[2(x+3)]dx

    =1/2∫x/(x+1)dx-∫x/(x+2)dx+1/2∫x/(x+3)dx

    =1/2(x-ln|x+1|)-(x-2ln|x+2|)+1/2(x-3ln|x+3|)+C

    =-1/2ln|x+1|+2ln|x+2|-3/2ln|x+3|+C