因为矩阵A的秩为1
所以AX=0的基础解系的基数为2
又X1,X2,X3是三个解向量
所以X1-X2=列向量(2,-2,3)和X1-X3=(0,0,2)是AX=0的基础解系
AX=β的解为通解加特解,它的解为
C*列向量(2,-2,3)+D*列向量(0,0,2)+列向量(1,0,2)
其中C,D为任意实数
因为矩阵A的秩为1
所以AX=0的基础解系的基数为2
又X1,X2,X3是三个解向量
所以X1-X2=列向量(2,-2,3)和X1-X3=(0,0,2)是AX=0的基础解系
AX=β的解为通解加特解,它的解为
C*列向量(2,-2,3)+D*列向量(0,0,2)+列向量(1,0,2)
其中C,D为任意实数