f'(x)=-x 当x>0时f'(x)
设f(x)可导f'(0)=0,又limf'(x)\x=-1(x趋向于0),则f(0)一定是f(x)的极值吗?
0时f'(x)"}}}'>
2个回答
相关问题
-
设f(x)二阶可导,limx趋向于0[f(x)/x]=1,且f'(x)>0,证明f(x)>=x
-
设f(0)=0,f'(0)=2,求limf(x)/sin 2x ,x 趋向于0
-
若f(x)可导,f(0)=0.证明x趋近于0时limf(x)/x=f'(0)
-
1.设函数f(x)具有连续的二阶导数,且f‘(0)=0,limf''(x)/|x|=1,则f(0)是f(x)的极小值,这
-
设f(x)=√x,求limf(x+h)-f(x)/h (h趋向于0)
-
当x趋向于0时,limf(x)/x=1,且f‘’(x)>0,证明:f(x)>=x
-
设函数f(x)在点x=0的某邻域内可导,且f'(0)=0,Limx趋向于0 f '(x)/x =-
-
设f(x)可导,且f`(0)=0,lim(f`(x)/x)=2,则f(0)
-
设f(x) 是可导函数且f(0)=0 ,则lim(x->0)f(x)/x =
-
设函数f(x)在x=0点可导,且f(0)=0,f‘(0)=1,则limx—0 f(x)/x=?