(1)设点Q的坐标为(x,y),∵[PQ/QN=
1
2],N(3r,0),
∴点P的坐标为(
3(x−r)
2,
3
2y),代入圆M的方程化简得x2+y2=r2即为所求点Q的轨迹方程.
(2)设点R的坐标为(x0,y0)(y0≠0),则x02+y02=r2.
圆在R点处的切线方程为:x0x+y0y=r2.
又切线AC、BD的方程分别为x=-r,x=r,
解方程组可得C、D两点的坐标为C(−r,
r2+x0r
y0) ,D(r,
r2−x0r
y0),
∴直线BC、AD的方程分别为y=
r2+x0r
−2r2y02(x−r),y=
r2−x0r
2ry0(x+r),
两式相乘,得y2=
r2(r2−x02)
−4r2y02(x2−r2),化简得x2+4y2=r2(y≠0).
∴所求点S的轨迹方程为x2+4y2=r2(y≠0).