设f(x)=a0+a1x+...+anx^n为n次整系数多项式,若an、a0、f(1)都为奇数,证明:f(x)=0无有理

1个回答

  • 反证:假设有有理根,设为p/q(p,q为互质的整数,且q不等于0),则(x-p/q)|f(x),因为f(x)为整系数多项式,且在有理数域可约,则可以得到qx-p|f(x)【本原多项式学了吧,如果一个非零整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定可以分解成两个次数较低的整系数多项式,这里f(x)=(x-p/q)g(x),推出f(x)=(qx-p)h(x)成立】,根据定理p|a0,q|an,可知p,q均为奇数f(1)=(q-p)h(1),又f(1)为奇数,h(1),为整数,则q-p为奇数(奇数可约只能是两个奇数之积)而p,q均为奇数,q-p一定为偶数,矛盾,即证