-x+√(x^2+2)=2/[x+√(x^2+2)]
所以f(-x)=log2(2)-log2[x+√(x^2+2)]-a=-f(x)=-log2[x+√(x^2+2)]+a
log2(2)-a=a
a=1/2
(1/2)^-x-1=2^x-1
若是偶函数
g(-x)=-x*[1/(2^x-1)+1/2]=g(x)=x*[1/(2^-x-1)+1/2]
-1/(2^x-1)-1/2=1/(2^-x-1)+1/2
-1/(2^-x-1)-1/(2^x-1)=1
-2^x/(1-2^x)-1/(2^x-1)=1
2^x/(2^x-1)-1/(2^x-1)=1
(2^x-1)/(2^x-1)=1
成立
所以存在