an=(1/5)[1/n(n+1)]
=(1/5)[1/n-1/(n+1)]
所以原式=(1/5)[1-1/2+1/2-1/3+……+1/n-1/(n+1)+……]
=(1/5)[1-1/(n+1)+……]
n趋于无穷
所以1/(n+1)趋于0
所以原式=(1/5)(1-0)=1/5
an=(1/5)[1/n(n+1)]
=(1/5)[1/n-1/(n+1)]
所以原式=(1/5)[1-1/2+1/2-1/3+……+1/n-1/(n+1)+……]
=(1/5)[1-1/(n+1)+……]
n趋于无穷
所以1/(n+1)趋于0
所以原式=(1/5)(1-0)=1/5