矩阵奇异值分解手工算法能否利用矩阵特征值分解给出矩阵的奇异值分解?USV是否都能求出?有无手工计算的步骤?

1个回答

  • 当然是可以的.

    如果A=USV'是精简的奇异值分解,也就是说S是r阶非奇异的方对角阵,这里r是A的秩,U和V分别是两个正交阵(或酉阵)的r列.

    那么先计算出A'A的谱分解A'A=Q*D*Q',要求D中特征值是降序排列的,取S^2是D的最大非奇异主子阵(r阶),V是Q中相应的前r列,然后就有U=AVS^{-1}.

    如果要完整的SVD分解,那么先得到精简分解之后再把U和V分别张成满的正交阵即可,这个可以通过镜像变换或者Gram-Schmidt正交化来做.