证明:
因为1∕n(n+1)=1/n—1/(1+n)
所以,有
1∕ 1×2+1∕ 2×3+1∕ 3×4+……+1∕n(n+1)
=(1—1/2)+(1/2—1/3)+(1/3—1/4)……+[1/n—1/(1+n)]
=1-1/(n+1)
=n∕n+1
证明:
因为1∕n(n+1)=1/n—1/(1+n)
所以,有
1∕ 1×2+1∕ 2×3+1∕ 3×4+……+1∕n(n+1)
=(1—1/2)+(1/2—1/3)+(1/3—1/4)……+[1/n—1/(1+n)]
=1-1/(n+1)
=n∕n+1