n=1代入:a(1)=c+4
S(n)=(n+1)^2+c ……(1)
n+1代入(1):
S(n+1)=(n+2)^2+c ……(2)
(2)-(1)化简得:
a(n+1)=2n+3
即:a(n)=2n+1
由于 {an} 是等差数列,因此a(1)应该满足通项公式
所以:c+4=3
c=-1
所以 充要条件是 c=-1
必要性已证,充分性显然
n=1代入:a(1)=c+4
S(n)=(n+1)^2+c ……(1)
n+1代入(1):
S(n+1)=(n+2)^2+c ……(2)
(2)-(1)化简得:
a(n+1)=2n+3
即:a(n)=2n+1
由于 {an} 是等差数列,因此a(1)应该满足通项公式
所以:c+4=3
c=-1
所以 充要条件是 c=-1
必要性已证,充分性显然