角CBA=角AOD,sin角OBA=DA除OA=5分之2乘根号5,cosCBA=5分之根号5,因为角BAC=180-2角CBA,所以sinBAC=sin2CBA=2sinCBAcosCBA=5分之4
如图:△ABC中AB=AC,O为BC中点,OD⊥AB于D,以OD为半径作⊙O交DO的延长线于E,连接EC,此时可证EC,
2个回答
相关问题
-
1.如图,O点为△ABC内的一点,过O点作OD∥AB交BC于D,作OE∥AC交于BC于E.求证:△ABC∽△ODE.
-
如图,在Rt△ABC中,∠C=90°,以BC边为直径的⊙O交AB于点D,连接OD并延长交CA的延长线于点E, 过点D作D
-
如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(
-
如图,在△ABC中,以BC为直径的圆心O交AB于D,交AC于E,BD=EC.求证:AB=AC
-
在△ABC中,∠ABC和∠ACB的平分线交于点O,过点O作EF∥于BC交AB于E,作OD⊥AC于D
-
如图,△ABC中,AB=AC,作以AB为直径的⊙O与边BC交于点D,过点D作⊙O的切线,分别交AC、AB的延长线于点E、
-
如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
-
如图,在△ABC中,AB=AC,以AB为直径的○O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.
-
如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于