cos[π/2-πx/2]=sinπx/2.这是怎么变来的.
1个回答
cos(π/2)cosπx/2+sinπ/2sinπx/2
=0+sinπx/2
=sinπx/2
相关问题
若sin(x-π)=2cos(2π-x),求(sin(π-x)+5cos(2π-x))/(3cos(π-x)-sin(-
f(x)sinx·sin(π-x)+√3sin(π/2+x)cos(π/2+x)+2cos(π+x)cos(π-x) 求
已知f(x)=sin(x−3π)•cos(2π−x)•sin(−x+3π2)cos(−x−π)•cos(π2−x)
已知 f(x)= sin(x-3π)•cos(2π-x)•sin(-x+ 3π 2 ) cos(-x-π)•cos( π
sin(2x-π/2)=-cos2x是怎么来的,
已知函数f(x)= [sin(2π-x)sin(π+x)cos(-x-π)] /[2cos(π-x)sin(3π-x)]
已知sin(x-π/4)=1/3,则cos(π/4+x)=?这一步是怎么得来的cos[π/2-(π/4-x)]
已知f(x)=sin(5π2+x)cos(x−π2)•sin(x+π)•cos(π-x).
f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)*cos(x+π/8)=cos(2x+π/4)+sin(
sin2πx+cos2πx的周期 sin2πxcos2πx的周期