1、解
∵∠BAC+∠ACB+∠B=180,∠B=35,∠ACB=85
∴∠BAC=180-(∠ACB+∠B)=60
∵AD平分∠BAC
∴∠BAD=∠BAC/2=30
∴∠ADE=∠BAD+∠B=30+35=65
∵PE⊥AD
∴∠E+∠ADE=90
∴∠E=90-∠ADE=25°
2、:∠E=(∠ACB-∠B)/2
证明:
∵∠BAC+∠ACB+∠B=180
∴∠BAC=180-(∠ACB+∠B)
∵AD平分∠BAC
∴∠BAD=∠BAC/2=90-(∠ACB+∠B)/2
∴∠ADE=∠BAD+∠B=90-(∠ACB+∠B)/2+∠B=90+(∠B-∠ACB)/2
∵PE⊥AD
∴∠E+∠ADE=90
∴∠E=90-∠ADE=90-[90+(∠B-∠ACB)/2]=(∠ACB-∠B)/2