原方程ax^2+bx+c=0,根为x1,x2,有x1+x2=-b/a,x1x2=c/a
新方程ax^2+cx+b=0,根为2x1,x2,有2x1+x2=-c/a,2x1x2=b/a
故x1x1=c/a=b/(2a),得:b=2c
故有x1+x2=-2c/a
2x1+x2=-c/a
两式相减得:x1=c/a,x2=-3c/a
x1x2=-3(c/a)^2=c/a
得:c=-a/3,故b=2c=-2a/3
因此原方程为:ax^2-2ax/3-a/3=0
取a=3,可得:3x^2-2x-1=0
原方程ax^2+bx+c=0,根为x1,x2,有x1+x2=-b/a,x1x2=c/a
新方程ax^2+cx+b=0,根为2x1,x2,有2x1+x2=-c/a,2x1x2=b/a
故x1x1=c/a=b/(2a),得:b=2c
故有x1+x2=-2c/a
2x1+x2=-c/a
两式相减得:x1=c/a,x2=-3c/a
x1x2=-3(c/a)^2=c/a
得:c=-a/3,故b=2c=-2a/3
因此原方程为:ax^2-2ax/3-a/3=0
取a=3,可得:3x^2-2x-1=0