∫ f(x)dx = (1/x)e^x
f(x) = (xe^x-e^x)/x² = (1/x²)(x-1)e^x
∫ xf'(x) dx
= ∫ x df(x)
= xf(x) - ∫ f(x)dx
= (1/x)(x-1)e^x - (1/x)e^x + C
= (1/x)(x-2)e^x + C
∫ f(x)dx = (1/x)e^x
f(x) = (xe^x-e^x)/x² = (1/x²)(x-1)e^x
∫ xf'(x) dx
= ∫ x df(x)
= xf(x) - ∫ f(x)dx
= (1/x)(x-1)e^x - (1/x)e^x + C
= (1/x)(x-2)e^x + C