十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解.
十字相乘法能把某些二次三项式分解因式.对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2).在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.基本式子:x²+(p+q)χ+pq=(χ+p)(χ+q).