解题思路:(1)A1B1上存在一点D1,满足D1为A1B1的中点,使得C1D1平行于平面ABC.根据线面平行的判定可以证明.
(2)过B1点作AA1,CC1的垂线,垂足为E,F,连接EF,取EF的中点O,则△OC1A1为△C1A1,B1的射影,分别求出面积,利用公式可求;
(3)多面体的体积为
V
ABC−
A
1
B
1
C
1
+
V
B
1
−EF
C
1
A
1
,分别计算,即可求得.
(1)A1B1上存在一点D1,满足D1为A1B1的中点,使得C1D1平行于平面ABC.
D1为A1B1的中点,取AB 的中点D,连接DD1,C1D1,
∵多面体ABC-A1B1C1是由直棱柱被平面A1B1C1而成
∴AA1∥BB1∥CC1,
∵AA1=4,BB1=2,D1为A1B1的中点,取AB 的中点D,
∴DD1∥CC1,且DD1=CC1=3
∴四边形CDD1C1为平行四边形
∴D1C1∥DC
∵D1C1⊄平面ABC,DC⊂平面ABC
∴C1D1∥平面ABC.
(2)过B1点作AA1,CC1的垂线,垂足为E,F,连接EF,取EF的中点O,则B1O⊥平面C1A1B1,
∵AB与BC垂直,AB=BC=1
∴EB1=FB1=1,EF=
2
∵OB1=
2
2,
∵AA1=4,BB1=2,CC1=3
∴C1F=1
∴A1B1=
5,B1C1=
2,A1C1=
3
∴△A1B1C1为直角三角形,
∴B1C1⊥A1C1,
∵B1O⊥平面C1A1B1,
∴OC1⊥平面C1A1B1,
∴∠OC1B1为二面角B1-A1C1-A的平面角
∵sin∠OC1B1=
OB1
B1C1=
点评:
本题考点: 二面角的平面角及求法;组合几何体的面积、体积问题;直线与平面平行的判定.
考点点评: 本题重点考查线面平行,面面角,考查多面体的体积,解题的关键是用好线面平行的判定,确定射影面积,及分割法求多面体的体积,综合性强,难度大.