1.原式=sin(π/9)*[cos(π/9)cos(2π/9)cos(4π/9)]/sin(π/9)
=1/2*[sin(2π/9)cos(2π/9)cos(4π/9)]/sin(π/9)
=1/8cos(8π/9)/sin(π/9)
=1/8
2.原式=2*根号下(1+2*sin2cos2)-根号下[2-2*(1-2(sin2)^2)]
=2*根号下(sin2+cos2)^2-根号下[4(sin2)^2)]
=2*(sin2+cos2)-2sin2
=2cos2
1.原式=sin(π/9)*[cos(π/9)cos(2π/9)cos(4π/9)]/sin(π/9)
=1/2*[sin(2π/9)cos(2π/9)cos(4π/9)]/sin(π/9)
=1/8cos(8π/9)/sin(π/9)
=1/8
2.原式=2*根号下(1+2*sin2cos2)-根号下[2-2*(1-2(sin2)^2)]
=2*根号下(sin2+cos2)^2-根号下[4(sin2)^2)]
=2*(sin2+cos2)-2sin2
=2cos2