已知向量a=(2sinx\2,根号下3+1),向量b=(cosx\2-根号下3sinx\2,1),f(x)=向量a

1个回答

  • 向量a=(2sinx2,根号下3+1),向量b=(cosx2-根号下3sinx2,1)

    f(x)=a●b+m

    =2sinx/2(cosx/2-√3sinx/2)+√3+1+m

    =2sinx/2cox/2-2√3sin²x/2+√3+1+m

    =sinx-√3(1-cosx)+√3+1+m

    =2(1/2sinx+√3/2cosx)+1+m

    =2sin(x+π/3)+1+m

    ∵x∈[0,2π]

    ∴x+π/3∈[π/3,7π/3]

    ∴x+π/3∈[π/3,π/2]或x+π/3∈[3π/2,7π/3],

    即x∈[0,π/6],或x∈[7π/6,2π]

    函数f(x)递增

    当x+π/3∈[π/2,3π/2],即x∈[π/6,7π/6]

    函数递减

    ∴f(x)在[0,2派]上的单调递增区间为

    [0,π/6],[7π/6,2π]

    单调递增区间为[π/6,7π/6]

    2

    x属于[0,派2]时,x+π/3∈[π/3,5π/6]

    ∴x+π/3=5π/6时,f(x)min=2+m=2

    ∴m=0

    f(x)=2sin(x+π/3)+1

    f(x)≥2即 sin(x+π/3)≥1/2

    2kπ+π/6≤x+π/3≤ 2kπ+5π/6

    2kπ-π/6≤x≤ 2kπ+π/2

    ∴f(x)≥2成立的x的取值集合

    为{x| 2kπ-π/6≤x≤ 2kπ+π/2,k∈Z}

    3

    a[f(x)-m]+b[f(x-c)-m]=1

    即a[2sin(x+π/3)+1]+b[2sin(x-c+π/3)+1]=1

    2[asin(x+π/3)+bsin(x+π/3-c)]+a+b=1对任意x属于R恒成立

    x=-π/3时,2bsin(-c)+a+b=1

    x=2π/3时,2bsinc+a+b=1

    x=π/6时,2a+2bcosc+a+b=1

    ∴a+b=1,sinc=0,cosc=±1

    若cosc=1,那么a+b=0矛盾

    ∴cosc=-1,2a-2b=0,a=b

    ∴a=b=1/2,c=2kπ+π,k∈Z

    此时2[asin(x+π/3)+bsin(x+π/3-c)]+a+b

    =sin(x+π/3)+sin(x+π/3-2kπ-π)+a+b

    =sin(x+π/3)-sin(x+π/3)+a+b

    =a+b=1恒成立

    ∴ bcos(c/a)=1/2cos(4kπ+2π)=1/2