等式两边令x=0得f(0)=1
等式两边求导:2f(x)-1=f'(x)
令y=f(x),则y'=2y-1,此为一阶非齐次线性微分方程,套用通解公式可得通解y=1/2+Ce^(2x).所以f(x)=1/2+Ce^(2x),再由f(0)=1得C=1/2,所以f(x)=1/2[1+e^(2x)]
等式两边令x=0得f(0)=1
等式两边求导:2f(x)-1=f'(x)
令y=f(x),则y'=2y-1,此为一阶非齐次线性微分方程,套用通解公式可得通解y=1/2+Ce^(2x).所以f(x)=1/2+Ce^(2x),再由f(0)=1得C=1/2,所以f(x)=1/2[1+e^(2x)]