(1)CE'²=CE²=(2√2)²+(2√2)²=16
CE'=4
cos∠ACE'=AC/CE'=2√3/4=√3/2
∠ACE'=30°
(2)∠ACD'=∠BCE'=45°-30°=15°
CB=√2*AC=2√6
CD':AC=2√2:4=√2/2
CE':CB=2√3:2√6=√2/2=CD':AC
∴△CD'A∽△CE'B
∠D'AC=∠B=45°=∠ACB
∴AD'‖BC
∵∠CD'A≥90°,∠BAD'>90°
∴∠CD'A+∠BAD'>180°
AB与CD不平行
故四边形ABCD'是梯形;
(3)在Rt△ACE'中,AE'=CE'/2=2
E'B=2√3-2
由△CD'A∽△CE'B
AD':E'B=CD':CE'
AD'=2√2*(2√3-2)/4=√6-√2
D'M=CD'tan∠MCD'=2√2tan15°=2√2(2+√3)=4√2+2√6
△AD'M的面积=(1/2)D'M*D'Asin∠AD'M
=(1/2)(4√2+2√6)*(√6-√2)sin30°=√3+1