为方便,首先只讨论积分:在区间[-a,a]积分e^((-x^2)/2)dx 记其值为V.
为以下讨论方便,正方形区域: -a<=x<=a,-a<=y <=a记为D,
其外接圆区域: x^2 +y^2 <=2a^2 记为G.
则V^2 = {在区间[-a,a]积分e^((-x^2)/2)dx }^2
={在区间[-a,a]积分e^((-x^2)/2)dx }*{在区间[-a,a]积分e^((-y^2)/2)dy}
=在D上,e^[- (x^2+y^2)/2]dxdy二重积分
=在G上,e^[- (x^2+y^2)/2]dxdy二重积分
=在区间[0,2pi]积分{在区间[0,a*根号2]积分e^[- (r^2)/2]rdr}
= 2pi*{在区间[0,a*根号2]积分e^[- (r^2)/2]rdr
= 2pi*{函数- e^[(-r^2)/2]在r= a*根号2处的值 - 在r=0处的值}
=2pi*{- e^(-a^2)+1}=
=2pi*{1- e^(-a^2)}
即V^2< 2pi*{1- e^(-a^2)}
由于V>0,
故得:V从而,原式左端= (1/(根号(2pi))*V 即:原式左端 命题得到证明.