已知数列{an}为a0,a1,a2,a3,…,an(n∈N),bn=ni=0ai表示a0+a1+a2+a3+…+an,i

1个回答

  • 解题思路:(1)由已知条件得

    n

    i=0

    (

    b

    i

    C

    i

    n

    )=(

    2

    1

    −1)

    C

    0

    n

    +(

    2

    2

    −1)

    C

    1

    n

    +(

    2

    3

    −1)

    C

    2

    n

    +…+(

    2

    n+1

    −1)

    C

    n

    n

    ,由此利用分组求和法能求出结果.

    (2)由已知条件得

    n

    i=0

    (

    b

    i

    C

    i

    n

    )=1•2•

    C

    1

    n

    +2•3•

    C

    2

    n

    +3•4•

    C

    3

    n

    +…+n(n+1)

    C

    n

    n

    ,由此利用导数性质能求出结果.

    (1)∵an=2n,bn=

    n

    i=0ai,

    ∴bn=20+21+22+…+2n=2n+1−1,

    n

    i=0(bi

    Cin)=(21−1)

    C0n+(22−1)

    C1n+(23−1)

    C2n+…+(2n+1−1)

    Cnn

    =21•

    C0n−1•

    C0n+22•

    C1n−1•

    C1n+23•

    C2n−1•

    C2n+…+2n+1•

    Cnn−1•

    Cnn

    =2(

    C0n+21•

    C1n+22•

    C2n+…+2n•

    Cnn)−(

    C0n+

    C1n+

    C2n+…+

    Cnn)

    =2(1+2)n-2n=2•3n-2n. …(4分)

    (2)∵an=2n,bn=

    n

    i=0ai,

    ∴bn=0+2+4+…+2n=n(n+1),

    n

    i=0(bi

    Cin)=1•2•

    C1n+2•3•

    C2n+3•4•

    C3n+…+n(n+1)

    Cnn,

    (1+x)n=

    C0n+

    C1nx+

    C2nx2+

    C3nx3+…+

    Cnnxn,

    两边同乘以x,则有x(1+x)n=

    C0nx+

    C1nx2+

    C2nx3+

    C3nx4+…+

    Cnnxn+1,

    两边求导,左边=(1+x)n+nx(1+x)n-1

    右边=

    C0n+2

    C1nx+3

    C2nx2+4

    C3nx3+…+(n+1)

    Cnnxn,

    即(1+x)n+nx(1+x)n−1=

    C0n+2

    C1nx+3

    C2nx2+4

    C3nx3+…+(n+1)

    Cnnxn(*),

    对(*)式两边再求导,

    得2n(1+x)n−1+n(n−1)x(1+x)n−2=2•1•

    C1n+3•2•

    C2nx+4•3•

    C3nx2+…+(n+1)n

    Cnnxn−1

    取x=1,则有(n2+3n)•2n−2=1•2•

    C1n+2•3•

    C2n+3•4•

    C3n+…+n(n+1)

    Cnn

    n

    i=1(bi

    Cin)=(n2+3n)•2n−2.…(10分)

    点评:

    本题考点: 数列的求和.

    考点点评: 本题考查数列的前n项和的求法,综合性强,难度大,计算繁琐,解题时要认真审题,注意导数性质的灵活运用.