解题思路:(1)由已知条件得
n
i=0
(
b
i
C
i
n
)=(
2
1
−1)
C
0
n
+(
2
2
−1)
C
1
n
+(
2
3
−1)
C
2
n
+…+(
2
n+1
−1)
C
n
n
,由此利用分组求和法能求出结果.
(2)由已知条件得
n
i=0
(
b
i
C
i
n
)=1•2•
C
1
n
+2•3•
C
2
n
+3•4•
C
3
n
+…+n(n+1)
C
n
n
,由此利用导数性质能求出结果.
(1)∵an=2n,bn=
n
i=0ai,
∴bn=20+21+22+…+2n=2n+1−1,
∴
n
i=0(bi
Cin)=(21−1)
C0n+(22−1)
C1n+(23−1)
C2n+…+(2n+1−1)
Cnn
=21•
C0n−1•
C0n+22•
C1n−1•
C1n+23•
C2n−1•
C2n+…+2n+1•
Cnn−1•
Cnn
=2(
C0n+21•
C1n+22•
C2n+…+2n•
Cnn)−(
C0n+
C1n+
C2n+…+
Cnn)
=2(1+2)n-2n=2•3n-2n. …(4分)
(2)∵an=2n,bn=
n
i=0ai,
∴bn=0+2+4+…+2n=n(n+1),
∴
n
i=0(bi
Cin)=1•2•
C1n+2•3•
C2n+3•4•
C3n+…+n(n+1)
Cnn,
(1+x)n=
C0n+
C1nx+
C2nx2+
C3nx3+…+
Cnnxn,
两边同乘以x,则有x(1+x)n=
C0nx+
C1nx2+
C2nx3+
C3nx4+…+
Cnnxn+1,
两边求导,左边=(1+x)n+nx(1+x)n-1,
右边=
C0n+2
C1nx+3
C2nx2+4
C3nx3+…+(n+1)
Cnnxn,
即(1+x)n+nx(1+x)n−1=
C0n+2
C1nx+3
C2nx2+4
C3nx3+…+(n+1)
Cnnxn(*),
对(*)式两边再求导,
得2n(1+x)n−1+n(n−1)x(1+x)n−2=2•1•
C1n+3•2•
C2nx+4•3•
C3nx2+…+(n+1)n
Cnnxn−1
取x=1,则有(n2+3n)•2n−2=1•2•
C1n+2•3•
C2n+3•4•
C3n+…+n(n+1)
Cnn
∴
n
i=1(bi
Cin)=(n2+3n)•2n−2.…(10分)
点评:
本题考点: 数列的求和.
考点点评: 本题考查数列的前n项和的求法,综合性强,难度大,计算繁琐,解题时要认真审题,注意导数性质的灵活运用.