y=1/a +4/b
=[(1/2)(a+b)]/a +2(a+b)/b
=(1/2)(1+ b/a) +2(a/b +1)
=(1/2)(b/a) +2(a/b) +5/2
由均值不等式得,当(1/2)(b/a)=2(a/b)时,即a/b=1/2时,(1/2)(b/a)+2(a/b)有最小值2
此时,y有最小值ymin=2+ 5/2=9/2
y=1/a +4/b
=[(1/2)(a+b)]/a +2(a+b)/b
=(1/2)(1+ b/a) +2(a/b +1)
=(1/2)(b/a) +2(a/b) +5/2
由均值不等式得,当(1/2)(b/a)=2(a/b)时,即a/b=1/2时,(1/2)(b/a)+2(a/b)有最小值2
此时,y有最小值ymin=2+ 5/2=9/2