在四边形ABCD中,连接AC,作角ABE=角ACD,角BAE=角CAD
则三角形ABE和三角形ACD相似
所以 BE/CD=AB/AC,即BE*AC=AB*CD (1)
又有比例式AB/AC=AE/AD
而角BAC=角DAE
所以三角形ABC和三角形AED相似.
BC/ED=AC/AD即ED*AC=BC*AD (2)
(1)+(2),得
AC(BE+ED)=AB*CE+AD*BC
又因为BE+ED>=BD
所以命题得证
当且仅当E点落在线段BD上时,等号成立,此时ABCD内接于圆.
在四边形ABCD中,连接AC,作角ABE=角ACD,角BAE=角CAD
则三角形ABE和三角形ACD相似
所以 BE/CD=AB/AC,即BE*AC=AB*CD (1)
又有比例式AB/AC=AE/AD
而角BAC=角DAE
所以三角形ABC和三角形AED相似.
BC/ED=AC/AD即ED*AC=BC*AD (2)
(1)+(2),得
AC(BE+ED)=AB*CE+AD*BC
又因为BE+ED>=BD
所以命题得证
当且仅当E点落在线段BD上时,等号成立,此时ABCD内接于圆.