2sin²(A/2)=1-cosA=√3sinA
√3sinA+cosA=1
2(√3/2sinA+½cosA)=1
√3/2sinA+½cosA=½
sinA·cos(π/6)+sin(π/6)·cosA=½
sin(A+π/6)=½
∴A+π/6=5π/6
A=2π/3
sinBcosC=3cosBsinC
正弦定理和余弦定理得a^2=b^2+c^2+bc,a^2=2(b^2-c^2)
所以b^2-3c^2-bc=0,
b/c==(1+√13)/2
2sin²(A/2)=1-cosA=√3sinA
√3sinA+cosA=1
2(√3/2sinA+½cosA)=1
√3/2sinA+½cosA=½
sinA·cos(π/6)+sin(π/6)·cosA=½
sin(A+π/6)=½
∴A+π/6=5π/6
A=2π/3
sinBcosC=3cosBsinC
正弦定理和余弦定理得a^2=b^2+c^2+bc,a^2=2(b^2-c^2)
所以b^2-3c^2-bc=0,
b/c==(1+√13)/2