(1)如图:
(2)FE与F之间的数量关系为FE=FD
如图,在AC上截取AG=AE,连接FG
由(1)知∠EAF=∠GAF,
又∵AF为公共边,
∴△EAF≌△GAF,
∴FE=FG,∠EFA=∠GFA=60°
∴∠GFC=180°-60°-60°=60°
又∵∠DFC=∠EFA=60°,
∴∠DFC=∠GFC
由(1)知∠DCF=∠GCF,
又∵CF为公共边,
∴△FDC≌△FGC,
∴FD=FG
∴FE=FD
(3)(2)中的结论FE=FD仍然成立,理由如下:
在AC上截取AG=AE,连接FG,因为∠1=∠2,AF为公共边,可证△AEF≌△AGF,
所以∠AFE=∠AFG,FE=FG,
由∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,
可得∠2+∠3=60°,
所以∠AFE=∠CFD=∠AFG=60°,
所以∠CFG=180°-∠2-∠3-∠AFG=60°,
由∠3=∠4及FC为公共边,
可得△CFG≌△CFD,
所以FG=FD,
所以FE=FD。